Overview of SLO calculations
This guide presents a high-level overview of calculating SLOs in the Nobl9 platform. It is relevant to anyone who might want to dive deeper into Nobl9 SLOs and learn about:
-
Assumptions underlying SLI metrics (best practices/dos and don'ts)
-
Assumptions underlying threshold and ratio metrics (or raw and count metrics)
-
The ins and outs of error budget calculations
SLI metrics—assumptions
SLI metrics are two-dimensional data sets where value changes are distributed over time (see Image 1 below). This is a broad category, but there's a crucial caveat: SLI metrics can't be constructed from just any type of data.
Consider the following example. Suppose you choose the number of requests logged to your server per hour as your SLI metric. This might be a legitimate metric, but it will not tell you anything meaningful about the health of your service. It is just a piece of raw data about the traffic on your server per hour. You would not be able to measure the reliability of your service based on this type of input.
So, the most crucial thing about SLI metrics is that they must be meaningful. Beyond that, there are other important rules and considerations to remember; the following sections provide an overview.
Data types
It is crucial to remember that SLI metrics in Nobl9 are composed of real numbers. There are specific standards that these numbers must adhere to (e.g., the top limit of the range, etc.).
Nobl9 accepts metrics with three data types:
-
Float
-
Integer
-
Boolean
Whenever you send a boolean metric to Nobl9, it will be treated as a 1 (if the value is true) or a 0 (if the value is false). You can leverage this knowledge when configuring SLOs of the threshold metric type.